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ABSTRACT
The rapidly evolving landscape of multicore architectures
makes the construction of efficient libraries a daunting task.
A family of methods known collectively as “auto-tuning” has
emerged to address this challenge. Two major approaches to
auto-tuning are empirical and model-based: empirical auto-
tuning is a generic but slow approach that works by mea-
suring runtimes of candidate implementations, model-based
auto-tuning predicts those runtimes using simplified abstrac-
tions designed by hand. We show that machine learning
methods for non-linear regression can be used to estimate
timing models from data, capturing the best of both ap-
proaches. A statistically-derived model offers the speed of
a model-based approach, with the generality and simplicity
of empirical auto-tuning. We validate our approach using
the filterbank correlation kernel described in Pinto and Cox
[2012], where we find that 0.1 seconds of hill climbing on
the regression model (“predictive auto-tuning”) can achieve
almost the same speed-up as is brought by minutes of empir-
ical auto-tuning. Our approach is not specific to filterbank
correlation, nor even to GPU kernel auto-tuning, and can be
applied to almost any templated-code optimization problem,
spanning a wide variety of problem types, kernel types, and
platforms.

1. INTRODUCTION
Due to power consumption and heat dissipation concerns,

scientific applications have shifted from computing platforms
where performance had been primarily driven by rises in the
clock frequency of a single “heavy-weight” processor (with
complex out-of-order control and cache structures) to a plat-
form with ever increasing numbers of “light-weight” cores.
Interestingly, this shift is now not only relevant to compu-
tational sciences but to the development of all computer sys-
tems: from ubiquitous consumer-facing devices (e.g. phones)
to high-end computer farms for web-scale applications (e.g.
social networks).

Although the future lies in low-power multi-core hardware
designs, the field lacks consensus on exactly how the differ-
ent subsystems (memory, communication and computation)
should be efficiently integrated, modeled and programmed.
These systems have exhibited varying degrees of memory
hierarchy and multi-threading complexity and, as a conse-
quence, they have been increasingly relying on flexible but
low-level software-controlled cache management and paral-
lelism [Asanovic et al., 2006] in order to better control and
understand the various trade-offs among performance, reli-
ability, energy efficiency, production costs, etc. This evo-

lution has profoundly altered the landscape of application
development: programmers are now facing a wide diversity
of low-level architectural issues that must be carefully bal-
anced if they are to write code that is both high-performance
and portable.

1.1 Motivation
In this rapidly evolving landscape, the construction of gen-

eral development tools and libraries that fully utilize system
resources remains a daunting task. Even within special-
ized architectures from the same vendor, such as NVIDIA’s
Graphics Processing Units (GPUs) and the Compute Unified
Device Architecture (CUDA) [Nickolls et al., 2008, NVIDIA,
2011], many developers apply massive amounts of manual
labor to optimize CUDA code to specific input domains.
This hand-tuning rarely generalizes well to new hardware
generations or different input domains, is prone to error, re-
sults in unmaintainable code, and does not even guarantee
optimal performance. One of the reasons is that GPU ker-
nels can yield staggeringly large optimization spaces [Datta
et al., 2008]. The problem is further compounded by the
fact that these spaces can be highly discontinuous [Ryoo
et al., 2008], difficult to explore, and optimal performance
is often realized at the edge of “performance cliffs” induced
by hard device-specific constraints (e.g. register file size or
low-latency cache size).

1.2 Auto-Tuning
One strategy for addressing these challenges is to use one

of a variety of automatic methods known collectively as
“auto-tuning.” Two major auto-tuning approaches have e-
merged in the extensive literature covering the subject (see
surveys in e.g. [Vuduc et al., 2001, Demmel et al., 2005,
Vuduc et al., 2005, Williams, 2008, Datta et al., 2008, Cava-
zos, 2008, Li et al., 2009, Park et al., 2011]): analytical
model-driven optimization and empirical optimization [Yotov
et al., 2003].

The model-driven optimization approach uses analytical
abstractions to model the hardware architectures, in order
to identify possible code transformations and their complex
interactions. Even though highly-accurate analytical mod-
els are generally difficult to build, this approach has been
quite successful in the past, especially for accelerating serial
code, utilizing simplified but general abstractions. However,
large speed-ups for parallel code require more accurate high-
dimensional models and since this approach is bound by the
quality and scalability of its abstraction, it has been less
suited for highly-specialized kernels. This approach has been



well-developed in the compiler community, and as a result,
it has most often been applied at compile-time where im-
portant run-time characteristics such as input domains may
be missing. These limitations render the model-driven opti-
mization approach less attractive in many high-performance
library development settings.

The empirical optimization approach, in contrast, seeks
to find the best performing code configuration by automat-
ically generating many versions of a parametrized kernel
and benchmarking them on the actual hardware (possibly
at runtime, when contextual information about the hard-
ware and software stack is the richest). This method di-
rectly optimizes the metric(s) of interest (e.g. performance)
and does not rely on surrogates. A significant advantage
of such approaches is that they allow any metric to be op-
timized without loss of generality. Indeed, it is possible to
formulate a multi-objective optimization that minimize both
run time and power consumption [Rahman et al., 2011],
a feat that would be even more difficult using an analyti-
cal model-driven approach. Due to its flexibility, empirical
auto-tuning has been successfully applied to build a vari-
ety of high-performance domain-specific libraries including
dense linear algebra [Clint Whaley et al., 2001, Bilmes et al.,
1997], sparse linear algebra [Vuduc et al., 2005], signal pro-
cessing [Frigo and Johnson, 2005], sorting [Li et al., 2004],
general stencil operations [Kamil et al., 2010], etc.

The empirical approach is very sensitive to the choice of
instrumented optimizations and to the search method. The
size of the search space is often so large that the current
best empirical auto-tuners typically only consider highly-
specialized functions with a limited set of code transforma-
tions and compiler options, on a limited set of input domains
[Ganapathi et al., 2009]. Although searches for good code
configurations in highly-discontinuous spaces can be made
“embarrassingly”parallel, and thus benefit from parallel exe-
cution across many devices, it remains a prohibitively expen-
sive combinatorial optimization problem, as many variants
of the code must generated, compiled, and benchmarked on
specific input domains with meaningful statistics (that may
require multiple runs). Consequently, most proposed meth-
ods prune the space with hard-coded heuristics that offer lit-
tle generalization guarantees. This has been a key drawback
of the empirical approach as compared to the model-driven
approach, where good code configurations can be directly
derived from the analytical model.

To address this weakness, it is intuitively appealing to
combine the two approaches by first constraining the search
space with an analytical model and then exploring the re-
duced space empirically [Chen et al., 2005, Li et al., 2009].
Unfortunately, such a hybrid approach is still bound by the
quality of the analytical model, which remains hard to build
by hand.

In this paper, we show that it is possible to learn the model
using non-linear regression modeling techniques instead of
constructing a model manually. By learning the model, one
can hope to achieve elements of the best of both approaches:
the search speed of model-based auto-tuning with the broad
applicability and ease of implementation of empirical auto-
tuning.

Various statistical prediction techniques have been applied
with success at compile-time for general programs on various
CPU architectures [Monsifrot et al., 2002, Stephenson et al.,
2003, Yotov et al., 2003, Kulkarni et al., 2004, Cooper et al.,

2005, Franke et al., 2005, Hutter et al., 2006, Cavazos et al.,
2007, Cavazos, 2008, Hartono et al., 2009, Park et al., 2011,
Fursin et al., 2008]. Relative to this work, our contribution
is to show how to do fast predictive auto-tuning that satisfies
the requirements to: (a) handle the variety of recent multi-
core architectures like GPUs [Schaa and Kaeli, 2009], (b)
provide high-performance domain-specific libraries [Nukada
and Matsuoka, 2009, Li et al., 2009, Kamil et al., 2010],
(c) that select good implementations at run-time [Klöckner
et al., 2011, Pinto and Cox, 2012], and (d) for the full input
domain of a library routine [Liu et al., 2009, Grauer-Gray
and Cavazos, 2011].

The paper is organized as follows: Section 2 describes the
boosted regression tree model and the procedure for fitting it
to empirical timing data. Section 3 details the data-parallel
image processing algorithm we use to illustrate our auto-
tuning framework. Section 4 describes the sort of kernel we
employ for our benchmarking. Section 5 and 6 present the
results of our benchmarking experiments, which compare a
reference implementation to a) empirical auto-tuning over
a domain-specific grid, b) empirical auto-tuning over a hill-
climbing search, and c) predictive auto-tuning. Section 7
provides discussion and concluding remarks, while Section 8
outlines directions for future work.

2. PREDICTIVE AUTO-TUNING

autotune empirical
`
shapes, strides

´
1 a← TaskFeatures(shapes, strides)

2 c← PlatformFeatures()

3 b∗ ← argminb∈BMeasureT ime(a, b, c) . slow

4 return b∗

autotune predictive
`
shapes, strides

´
1 a← TaskFeatures(shapes, strides)

2 c← PlatformFeatures()

3 f ← T imingModel()

4 b∗ ← argminb∈B f(a, b, c) . fast

5 return b∗

Figure 1: Pseudo-code template for empirical
and predictive auto-tuning. Empirical auto-tuning
(above) is inevitably slow because dynamically-
generated code must be compiled and run on a num-
ber of actual-size inputs. Predictive auto-tuning
(below) can be orders of magnitude faster. We show
that it can also be accurate.

This work shows that auto-tuning can be accelerated by
orders of magnitude by using a regression model built offline
as a surrogate for actual computations on the real hardware.
The general form of an auto-tuning based library routine is
illustrated in Figure 1 (top). An auto-tuning based routine
must operate on three sets of variables:

A: task description (argument shapes, physical layout)

B: implementation description (auto-tuning parameters)

C: platform description (capabilities, micro-benchmarks)



The hypothetical auto-tuning routine described at the top
of Figure 1 might take many minutes or hours to perform
the argmin at step 3 (during which it computes the desired
result many times!) so it would not be suitable for a nor-
mal library routine implementation. However, the form of
the auto-tuning routine suggests the potential for enormous
acceleration: if only there were a fast (even approximate)
surrogate for the costly MeasureT ime(·) function, then the
argmin could be done in a fraction of a second and the
routine could be used normally (Figure 1, bottom).

2.1 Learning a Regression Model
The heart of our predictive auto-tuning is a regression

model that acts as surrogate for a hand-crafted hardware
model or empirical timing estimates. In our experiments,
this regression model fits empirically measured timing infor-
mation for a subset of the configuration space and interpo-
lates / extrapolates that timing across the remainder of the
space. To fit this model, we form a training set X ,Y where
each point x(i) ∈ X is a tuple (a(i), b(i), c(i)) and each target

y(i) ∈ Y reflects the speed of implementation b(i) on inputs
a(i) on platform c(i).

The effectiveness of predictive auto-tuning depends on the
mapping between the raw kernel timings t(a, b, c) (i.e. in
seconds) and the utility y associated with that timing. An-
ticipating that regression involves minimizing the squared
error of our predictor (see Eq. 1) it is important to choose
y so that differences of a given numerical magnitude corre-
spond to improvements of a certain utility. In program op-
timization we are interested in improving the speedup over
a reference implementation b(ref), so it is natural to choose

y(i) = log

„
speed(a, b, c)

speed(a, b(ref), c)

«
= log

„
t(a, b(ref), c)

t(a, b, c)

«
(1)

One unique aspect of our setting compared with standard
regression is that not all kernel implementations (b) are valid
for all input configurations. One option for dealing with
these invalid configurations would be to simply omit them
from X and Y, but that would lead to a regression model
that suggests invalid configurations. Instead, we chose to
associate invalid (a, b, c) tuples with a constant y = ζ. It
makes sense to choose ζ < 0 so that invalid configurations
are treated as being worse than the reference, but the ques-
tion of how much worse is an empirical one. In our experi-
ments we compare ζ in the range log(0.01) ≤ ζ ≤ log(.99).

2.2 Regression Trees
A regression tree is a piece-wise constant function from

one vector space to another, that works by recursively subdi-
viding the input space into constant regions [Breiman et al.,
1984, Hastie et al., 2001]. They are widely used in statistics
and data-mining applications because the fitting algorithm
is quick and reliable, and the form of the tree can provide
insight into the relevant input variables. We use a standard
fitting procedure, which takes a set of (x, y) ∈ Rk × R pairs
and constructs a tree with a low mean squared error. To
construct each node of a regression tree, we sort the set D
of (x, y) pairs along each of the k features to find the best
partitioning fi,γ of the input space along feature i at point

γ (Eqs. 2, 3).

fi,γ(x) =

(
α if xi < γ

β if xi ≥ γ
(2)

i∗, γ∗ = argmin
i,γ

Ê
ˆ
(y − fi,γ(x))2

˜
(3)

One disadvantage of the regression tree is that it does not
make full use of broad patterns in the data – each partition
formed by the fitting procedure is fit independently in the
recursive training procedure, so it impossible for the model
to extract more than one bit of information from each train-
ing partition. This disadvantage is mitigated to a significant
extent by the practice of boosting.

2.3 Boosted Regression Trees
Boosting is an iterative procedure for constructing an en-

semble of regression trees that is coordinated to fit training
examples as accurately as possible. [Schapire, 2001, Fried-
man, 2002] In a recent empirical study of a range of ma-
chine learning regression problems, boosted decision trees
were found to be among the best and easiest models to ap-
ply [Caruana and Niculescu-Mizil, 2006]. On each boosting
iteration, a regression tree is fit to the residual error re-
maining after all previously-fit models have made their pre-
dictions. There are essentially three parameters that control
the boosted regression tree training procedure: 1) the depth
of tree constructed on each boosting iteration, 2) the mini-
mum number of examples to allow at a regression tree leaf,
and 3) the number of trees constructed by boosting. We
did not attempt a systematic study of the effect of these
variables on performance. We chose a maximum depth of
4, so that each new tree would be a weak learner without
too much capacity; a minimum number of examples per leaf
of 10, so that the ensemble would resist over-fitting; and
100 iterations of boosting, after which the residual error on
training data appeared to have reached a minimum. Test
examples were not used to choose these values.

2.4 Search Algorithms
Once an accurate regression model has been fit to the

data, it remains to be optimized for novel arguments (Fig. 1,
bottom, step 4). An exhaustive search is the most reliable if
it can be afforded, but in our experiments (as in general) an
exhaustive search is prohibitively expensive. In our exper-
iments we compare two strategies: (1) a generic stochastic
hill-climbing search, and (2) a hand-chosen grid provided by
the authors of the kernel used in our experiments [Pinto and
Cox, 2012]. The hill-climbing (HC) search algorithm starts
from the reference implementation and resamples each of
the parameters of the current best implementation randomly
with probability 0.25 (keeping the current best setting with
probability 0.75). On each hill-climbing iteration, if the pre-
dicted speed of the newly sampled point is greater than the
previous point, then it becomes the current point. We show
results for search variants HC25, HC50, and HC75, which
correspond do hill-climbing for 25, 50, and 75 iterations re-
spectively. The grid algorithm is specific to the kernel used
in our case study, the details of the grid are provided with
our experimental results in Section 4.1



3. FILTERBANK CORRELATION
Filterbank correlation is a simple spatial image filtering

operation that is an important subroutine in many image
processing applications. It has a relatively high arithmetic
intensity which makes it a natural fit for GPU platforms [Pinto
and Cox, 2012].

Mathematically, we define filterbank correlation in terms
of an image x and a filterbank f . The image x has R rows,
C columns, and D channels (e.g. color channels) that we
call its depth. We index x like x[i, j, d] where 0 ≤ i < R,
0 ≤ j < C, and 0 ≤ d < D. The filterbank f has F filters
that are like little images: each has a height H, a width
W , and D channels. We will restrict ourselves to what are
called valid correlations, in which the image is larger in both
rows and columns than the filters. The result of filterbank
correlation of x with f is an image-like array z with R−H+1
rows, C−W + 1 columns, and depth F , whose elements are
defined according to Equation 4:

z[r, c, k] =

W−1X
w=0

H−1X
h=0

D−1X
d=0

x[r + h, c+ h, d] f [k, h, w, d]. (4)

In terms of floating point operations (FLOP), a filterbank
correlation requires the inner sums to be computed for each
output pixel, yielding the quantity in Eq. 5:

FLOP = 2FHWD(R−H + 1)(C −W + 1) (5)

The multiplicative factor of 2 arises because we must first
multiply an element of x with an element of f and then add
the result to an element of z.

The memory transfer requirements of filterbank correla-
tion are more difficult to quantify. Assuming three kinds
of non-register memory – constant, shared, and global –
and assuming optimistically that the entire filterbank fits
into the GPU’s constant memory, then we can establish a
lower bound (Eq. 6) on the amount of memory that must
be moved in order to store the computed result to global
memory starting from arguments in global memory:

Bytes = 4RCD

+ 4FHWD

+ 4(R−H + 1)(C −W + 1)F. (6)

In short, we must read the filterbank and image once, and
store the result.

The arithmetic intensity of filterbank correlation, assum-
ing our lower bound on memory transfers is therefore ap-
proximately

intensity ≈ FDHW

2(D + F )
, (7)

for images that are large relative to filters. Each F output
writes corresponds to approximately D input reads and F
inner products between DHW elements.

The high potential for arithmetic intensity makes the GPU
an ideal platform for computing filterbank correlations, and
filterbank correlation is used extensively in image and video
processing, where it is often a computational bottleneck.
One might expect then, that it would be easy to implement
a library providing this operation as a simple function that
takes pointers and strides for x, f , and z and performs the
computation. However, as shown in Pinto and Cox [2012]
it is challenging to provide an implementation or even an

implementation strategy that provides satisfactory perfor-
mance across the range of inputs (shapes, physical layouts)
that occur in typical usage. Kamil et al. [2009] summarize a
related situation related to general stencil computations in
their abstract: “Although the auto-tuning strategy has been
successfully applied to libraries, generalized stencil kernels
are not amenable to packaging as libraries.”

4. GPU IMPLEMENTATION
The strategy we use for computing filterbank correlation

on the GPU using CUDA follows Pinto and Cox [2012].
The overall strategy is to load the filterbank into constant
memory, which is relatively fast and visible to all threads,
and then launch a grid of blocks that tiles the output im-
age. Each thread computes 4 × n output 4s channels for
some column and row of z. Each block of threads computes
4 × n output 4s channels for a sub-rectangle of the output
image (z). When there are more than 4×n output 4s chan-
nels in z, or if the filterbank is too large to fit into constant
memory, then multiple kernel executions perform the full
computation. Our approach permits splitting the filterbank
along the number-of-filters dimension (F ) and the height
dimension (H). All the filterbanks in our study are small
enough that at least one row of a single filter can fit into
constant memory. Pseudo-code for the kernel is given in
Figure 2.

thread fbcorr
`
gX, cF, gZ

´
1 shared sX ← all channels of region (β) of gX

2 x, y ← position of this thread in output image

3 syncthreads()

4 v[0 : N ]← 0, for N = 4× n output 4s

5 for d← 0 to D,

6 for h← 0 to H/n filter r,

7 for w ← 0 to W ,

8 u← sX[x+ h, y + w, d]

9 for n← 0 to n output 4s− 1,

10 v[n]← v[n] + cF [n, h, w, d]

11 for n← 0 to n output 4s− 1,

12 gZ[x][y][4n:4n+n] += v[4n:4n+n], (float4)

Figure 2: Kernel pseudo-code for filterbank corre-
lation. Input gX is a pointer to x in global mem-
ory, input cF is a pointer to f in either constant
or texture memory, and output gZ is a pointer to
z in global memory. Each block of threads modifies
4 × n output 4s channels of a rectangle (called β in
code listing) within z. A grid of blocks covers all
rows and columns of z. Multiple calls can be used
to apply all filters of a large filterbank f to x.



The kernel is parametrized by 10 parameters:

block h ∈ (4, 8, 16, 32, 64, 128)

block w ∈ (4, 8, 16, 32, 64, 128)

n filter r ∈ (1, 2)

n output 4s ∈ (all, 1, 2)

spill ∈ (False, True)

imul fast ∈ (False, True)

pad shared ∈ (False, True)

use tex1d ∈ (False, True)

maxrreg ∈ (8, 16, 20, 24, 28, 32,∞)

fast math ∈ (False, True)

The block height (“block h”) and block width (“block w”)
parameters control the number of threads that run within
each block. Each kernel call loads some number of filter
rows (“n filter r”) into constant memory and processes the
correlation of the image with just those rows, incrementing
the output buffer. Each thread can compute several output
elements at once, in multiples (“n output 4s”) of 4; this in-
creases the efficiency of each thread, but can lead to lower
occupancy. Registers are a precious commodity on the GPU,
and this kernel accumulates elements of v in registers. The
“spill” parameter controls whether the current thread’s out-
put position in gZ is stored in a register (faster access) or
in shared memory (frees up a register). The “imul fast” pa-
rameter controls whether integer multiplication is done in
24-bit (True) or 32-bit (False) precision. The “pad shared”
parameter controls whether the sX shared memory buffer
is padded, which wastes space in shared memory but re-
duces bank conflicts. The “use tex1d” parameter controls
whether the image is loaded into shared memory with global
pointer dereferences or texture fetches. The “maxrreg” and
“fast math” parameters are passed to the nvcc compiler to
limit the number of registers available to each thread, and
to enable more aggressive instruction selection, respectively.

When the entire filterbank does not fit into the GPU’s
constant memory, P passes are necessary to compute all of
z, where

P =
FH

4 · n output 4s · n filter r
.

In such cases, the number of bytes moved to and from global
memory is much higher than the theoretical lower limit.

Bytes = 4RCDP

+ 4FHWD

+ 8(R−H + 1)(C −W + 1)FP.

These passes make the I/O requirements increase quadrat-
ically in F and H. At the same time, the total number of
floating-point operations (Eq. 5) is quadratic in H and W .
In our experiments, we only considered square filters so in
our setting the total number of flops is proportional to H4.

Critically: what makes this kernel interesting as a case
study is that the arithmetic intensity, shared storage, and
register requirements of this kernel change significantly and
in a complicated platform-dependent way with the argument
parameters (R,C,D, F,H,W ) and with the implementation
parameters, especially “block w”, “block h”, “n output 4s”
and “n filter rows.”

4.1 Reference and Grid
Pinto and Cox [2012] recommend as a reference imple-

mentation: block w = 8, block h = 8, n filter rows = 1,
n output 4s = all, spill = False, imul fast = True, pad sha-
red = True, use text1d = True, maxrreg =∞, and fast math
= False. This reference implementation was chosen manu-
ally based on good performance across a range of platforms
from older-generation cards such as the 8600GT all the way
to current-generation flagship cards such as the GTX 580
and C2070. Given that parameters were hand-chosen for
the reference kernel, no claims are made as to the optimality
nor universality of this reference (indeed, different program-
mers would undoubtedly arrive at different results). We use
this kernel configuration as a reasonable indicator of typical
performance made possible by ad hoc experimentation with
parameters.

Additionally, Pinto and Cox [2012] advocate a particular
grid search over what was estimated to be the most rel-
evant part of the configuration space. This grid iterates
over all combinations of n filter rows, n output 4s, spill l,
pad shared l for three different block h, block w choices:
(16, 8), (16, 16), and (32, 8). In our experiments, we call
this algorithm the grid search procedure. The grid included
72 points in addition to the reference implementation, for a
total of 73 points.

4.2 Software Stack
This kernel was implemented in the meta-programming

style advocated in Pinto and Cox [2012] in Python using
Cheetah for string processing and PyCUDA [Klöckner et al.,
2011] for dynamic kernel compilation and interfacing with
CUDA.

5. EXPERIMENTAL SETUP
Recall from the introduction (Eq. 1) that auto-tuning can

be seen as a conditional optimization problem in which we
seek an implementation (b ∈ B) that minimizes runtime or
some other scalar-valued cost function for given arguments
(a ∈ A) on a particular platform (c ∈ C). In order to per-
form predictive auto-tuning with a regression model, it is
necessary to characterize these three types of variables with
features. We describe the arguments to a filterbank cor-
relation with the 6-tuple (R,C,D, F,H,W ). We randomly
sampled arguments (uniformly) from the following product
space:

R = C ∈ {256, 512, 1024, 2048, 4096}
H = W ∈ {3, 5, 7, 9, 11}

D ∈ {1, 4, 8, 16, 32, 64, 128, 256}
F ∈ {1, 4, 8, 16, 32, 64, 128, 256}

A library implementation of this operation would ideally
support all image and filter sizes as well as variations due to
strided memory layouts. In such a setting it would be useful
to characterize the arguments with features such as whether
the inputs are Fortran-style contiguous, C-style contiguous,
or row-padded to various byte alignments. These additional
options would make our approach of automatic auto-tuning
even more important, because there would be a greater va-
riety in the kinds of computations and memory transfers to
perform. Our experiments consider a somewhat simplified
setting in which the arguments are always stored with depth



channels being contiguous in memory, followed by columns,
then rows, and then filters having the largest stride.

The product space in our study includes 1600 argument
combinations, but we restricted our experiments to correla-
tions that represented between 1 and 50 gigaflops (GFLOP)
of arithmetic. Smaller problems do not fully utilize GPU
hardware and are handled equally well by many kernel set-
tings. Larger take so long to evaluate that there is negli-
gible inefficiency in implementing them via multiple calls
with smaller images and fewer filters. With the experi-
ments searched an argument space included 602 configura-
tions with between 1 and 50 GFLOP.

For the implementation features b, we directly used the in-
teger and binary values (block w, block h, etc.) that paraded-
raced the kernels. We did not use platform features (c) in our
experiments. We leave the investigation of cross-platform
predictive auto-tuning for future work.

6. RESULTS
Figure 4 shows the effectiveness of empirical auto-tuning

is in this setting. Taking the GTX 580 as an example, and
averaging across the range of problem configurations in our
study, we find that empirically auto-tuned implementations
are on average about 50% faster than the reference imple-
mentation. The reference in turn, is about 50% faster than
implementations that were empirically auto-tuned for a ran-
domly chosen different argument configuration. This shows
that it is generally not enough to auto-tune for particular
argument configurations; instead it is important to choose
the right kernel for the job for each unique argument con-
figuration (input-dependent auto-tuning).

Comparing the grid to HC25, HC50 and HC75 we found
very little difference in performance. The HC25 was slightly
poorer, but the grid, HC50, and HC75 algorithms delivered
similar average results. None of the algorithms was strictly
better than the others. In our predictive auto-tuning exper-
iments we used HC75.

Figure 3 shows how accurate predictive auto-tuning is
compared with empirical auto-tuning. The training set (X ,
Y) for the regression model comprised all of the ((a, b, c), y)
pairs observed during grid search and hill-climbing search.
So for each training argument configuration a, c there were
148 different values of b and thus 148 training points. Fig-
ure 3 (a) shows that as more argument configurations are
used for training, the performance of predictive auto-tuning
on test configurations (a′, c) quickly approaches the aver-
age performance of empirical auto-tuning. We took care to
partition the train and test sets so that there were no over-
lapping configurations. The key difference between the pre-
dictive and empirical auto-tuning, is that predictive auto-
tuning typically took about 0.1 seconds per test example,
whereas empirical auto-tuning took about 1-3 minutes.

Figure 3 (b) and (c) show that the implementation speeds
found by predictive auto-tuning correlates very well with
the speed of empirical auto-tuning across all of the devices
we tested: GeForce GTX 295, Tesla C1060, GeForce GTX
580, GeForce GTX 480 and Tesla C2070 which span two
generations of NVIDIA CUDA platforms.

In some cases, predictive auto-tuning yields an invalid im-
plementation. We dealt with this scenario by backtracking
through the various best-estimates found during the hill-
climbing search. Some invalid kernels can only be discovered
after compiling code and attempting to run the compiled
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Figure 4: Different arguments call for different ker-
nels: left is the average argument-specific empiri-
cal auto-tuned performance across 100 random ar-
gument configurations, middle is the average speed
of our reference implementation, right is the average
speed of kernels auto-tuned for different argument
configurations than the one being tested. For 38 out
of 100 random configurations, the kernel auto-tuned
for another problem could not even run on the GTX
295 hardware. These points contributed a speed of
0, bringing down the average much lower than the
reference. Good performance across a variety of in-
puts requires input-dependent auto-tuning.

code, so in these cases predictive auto-tuning took up to 3
seconds. Even in these cases the predictive model is much
faster than empirical auto-tuning because the first kernel
that runs successfully is still typically a fast one.

Figure 5 shows how the training set size and the value
of ζ affect the accuracy of predictive auto-tuning. All can-
didates timed during the grid and hill-climbing search pro-
cedures were used as training examples, so the training set
sizes ranged from an average of 1,480 (10 problem config-
urations) to 29,600 (200 problem configurations). Training
from the largest training sets took approximately 30 sec-
onds. Training 50 or more problem configurations yielded
quite accurate predictions with ζ = log(0.5), which was the
best value for ζ across the range of devices in our study.

7. DISCUSSION
In this paper, we have demonstrated a boosted regression

tree-based auto-tuning method, wherein empirical perfor-
mance data is used to train a machine learning model of
performance for an instrumented GPU kernel. In contrast
to traditional model-based auto-tuning, where an explicit
model of performance is built on the basis of an understand-
ing of hardware inner workings, and empirical auto-tuning,
where an exhaustive set of implementation configurations
are tried, the present approach generates, from scratch, a
model of kernel performance on the basis of timing data
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Figure 3: Computation speed for novel problem configurations using predictive vs. empirical auto-tuning.
(a) As more problem configurations are used to train the regression model, the performance of predictive
auto-tuning approaches that of empirical auto-tuning despite taking only 0.1 seconds instead of minutes. (b)
and (c) For a wide range of devices, implementation speeds found by predictive auto-tuning correlate tightly
with implementation speeds found by empirical auto-tuning.

from a user-definable number of kernel evaluations. This
approach allows significant flexibility to navigate trade-offs
between offline and run-time costs, and final auto-tuning
performance. Importantly, this method treats kernels as
black-boxes, allowing the user to auto-tune in the absence of
deep knowledge of hardware details (which may even been
unknowable, in the case of hardware not available at the time
of kernel creation). This approach also frees auto-tuning
performance from a strong dependency on the accuracy (or
inaccuracy) of a pre-defined analytical model.

An important use case for the tools described here is in
the development of user-facing numerical libraries. Such li-
braries are a critical component of scientific computing in-
frastructure, since they abstract away implementation de-
tails and make algorithms available to a much wider audi-
ence. However, the abstraction provided by libraries repre-
sents a double-edged sword: one hand, using the library is
easier, because it presents a unified abstraction of related
functionality. However, at the same time, any given library
routine might represent a wide range of substantially dif-
ferent problem configurations, each with distinct computa-
tional issues and bottlenecks. Auto-tuning has long pro-

vided a solution that finesses these two issues, providing
multiple implementations under the hood, for multiple prob-
lem settings, and then using heuristics or explicit, hand-
crafted models to select the appropriate implementation for
a given set of inputs. The development of such auto-tuned
libraries, while extremely successful, is also very difficult.
The machine-learning-based techniques described here pro-
vide a middle ground, where a library developer can simply
create an instrumented kernel, and allow generic tools to
automatically generate appropriate auto-tuned implemen-
tations, with small (and controllable) run-time costs.

8. FUTURE WORK
While the present work serves as a basic demonstration

of the value of using machine learning models to predict op-
timal implementation parameters on a specific application,
there are many avenues for taking these ideas further.

A natural route to extend of our current approach is to
include more features as inputs to the predictive model. In
addition to further instrumentation of the kernel in ques-
tion, input features could include a much broader range of
hardware-related information, from more detailed informa-
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Figure 5: The effect of the invalid configuration
score (ζ) and training set size on predictive auto-
tuning. Models trained on as few as 25 configu-
rations outperformed the reference. Models trained
on 50 or more configurations rivalled empirical auto-
tuning. Moderate values of ζ between log(0.25) and
log(0.75) are best.

tion about device capabilities to micro-benchmarks [Wong
et al., 2010], and results from performance limiter analyses
[Micikevicius, 2010]. Such additional features would increase
the predictive model’s ability to adapt to a wide range of dif-
ferent kinds of hardware, including new devices not available
at the time of kernel creation.

Another potentially interesting avenue of research is in
interpreting the model learned by predictive auto-tuning.
While traditional model-based auto-tuning approaches by
design assume a given model, and empirical auto-tuning ap-
proaches are completely model free, the predictive approach
described here generates a model from performance data.
Because this generated model can be interrogated by a vari-
ety of means, a significant opportunity exists to learn about
the factors that drive the performance of a given kernel.
These insights can be used to further guide the development
and instrumentation of the kernel, potentially yielding even
greater gains.

Other directions will include the validation of our predic-
tive auto-tuning framework to other domains and environ-
ments, in particular general data-parallel primitives and non
data-parallel applications, other multi-core architectures, and
heterogeneous software platforms such as OpenCL.
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